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NUMERICAL CALCULATION OF THE V(λ) CURVES 

GASPAROVSKY Dionyz 
 
Abstract 
Aim of this paper is to present results of recent research at FEE&IT Slovak University of 
Technology in the field of lighting theory. Research has been oriented to find an empirical formula 
for calculation of V (λ) and V´ (λ) curves by means of non-linear regression, when matching 
criterion of empirical to theoretical curve is the least-square method. In the paper, regression 
algorithm is lined out, followed by compilation of system of normal equations. Solution is statistically 
evaluated.  
 

Introduction 
All the photometric (luminous) quantities used in lighting engineering are, in fact, derived from 
radiant quantities by means of the function of relative spectral sensitivity of human eye, also known 
as the V (λ) curve. As early as 1924, the Comission Internationale de L'Eclairage (CIE) laid down a 
standard spectral eye sensitivity curve for photopic vision V (λ), followed in 1951 by a similar curve 
for scotopic vision. The curves give the relative photopic and scotopic eye sensitivity as a function of 
the wavelength. Meaning of those curves for lighting engineering is very important, however, 
recently yet tabelized values are used in practice. More convenient is to use a formula, at least for 
calculations when not high precision results are required. 
 
Gaussian curves 
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Fig. 1  Gaussian curves for µ = 0, σ varies Fig. 2  Curves of spectral sensitivity of human 
 eye for different luminance levels 

 
1 - La = 10-5 cd.m-2 (V′(λ) curve for scotopic 
vision) 
2 - La = 10-4 cd.m-2 5 - La  = 10-1 cd.m-2 
3 - La = 10-3 cd.m-2 6 - La = 1 cd.m-2 
4 - La = 10-2 cd.m-2 7 - La = 10 cd.m-2 
8 - La = 100 cd.m-2 (V(λ) curve for fotopic 
vision) 
 

Gaussian curves are, in fact, being a geometrical representation of the normal distribution function N 
(µ, σ) with two independent variables (parameters), which are well known from the statistics. 
Meaning of the parameters is apparent from fig. 1 and is as follows: µ - average of statistical variable 
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and σ - dispersion about average value. The function of normal distribution can be written in a form 
of equation:  

 N e
x

( , )
( )

µ σ
σ π

µ
σ=
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2

22
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where  x - is a statistical variable  

Theoretical background on regression 
 In plane Oxy let us have a given set of points {[xi, yi]: xi, yi ∈ R, i = 1, 2, ..., n}, where xi and 
yi are coordinates of a point lying on the V (λ) curve - (thus, to simplify notation  y ≡ V a x ≡ λ). Let 
us suppose that between quantities x and y a functional relation y = f (x) is valid , where f (x) is 
function of a known form. In general theory of regression, it is further usually supposed that points 
[xi, yi] are dispersed along curve y  = f (x)  due to influence of measurement errors. In our case this 
kind of dispersion can be neglected supposing that V (λ) curves are standardized and therefore not 
loaded by errors (however, curves have initially been measured on very numerous and various 
sample of people).  
 Function f(x) contains generaly q (q < n) unknown constants, i.e. parameters, which can be 
designated b1, b2,..., bq, so we can write  f (x) = f (x; b1, b2,..., bq). Hence, functionality yi on xi can be 
expressed by so called operative equation  
 yi = f (xi; b1, b2,..., bq)    (i = 1, 2, ..., n)    (2) 
 When to overlap a curve described by equation y = f (x; b1, b2,..., bq) throughover points [x1, 
y1], [x2, y2], ..., [xn, yn], we need to statistically estimate unknown parameters b1, b2,..., bq, which act 
in the equation. At the same time we require that the curve is to be overlaped as close as possible to 
points [xi, yi]. Estimation of parameters bk is designated as  bk

*. The way how to determine bk
* 

depends on chosen criterion saying how close is the curve to empirical points. In least-sqare method, 
sum of squares of differences yi = f (xi; b1

*, b2
*,..., bq

*) is used as the criterion, estimations b1
*, b2

*,..., 
bq

* are then determined as the quantities minimalizing that sum. Thus, when we denote   
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then estimations bk
* (k = 1, 2, ..., q) will be determined from condition S = min. This condition 

express the principle of the least-square method. Function y = f (x; b1, b2,..., bq) is also called 
theoretical regression function of variable y on variable x and its grafical interpretation is theoretical 
regression curve. Regression function in which unknown parameters b are replaced by their 
estimations is called empirical regression function yi = f (xi; b1

*, b2
*,..., bq

*) and its grafical 
interpretation - empirical regression curve. For x = xi and coresponding dependant variable yi is 
from empirical curve possible to read the value yi

* = f (xi; b1
*, b2

*,..., bq
*). Difference ui = yi - yi

* is 
called residue of variable yi. Absolute value of that residue ui gives distance of point [xi, yi] from 
point [xi, yi

*] lying on overlaped curve. Residual (error) sum of squares is then 
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and is used for estimation of dispersion of points [xi, yi] along theoretical regression curve. 
 As the function S is a quadratic polynome q of variables b1

*, b2
*,..., bq

*, we minimize it by 
common method of searching extremes of function of multiple variables, i.e. partial derivations of 
that function by individual variables are to be reset (= 0). Thus, we obtain a system of linear 
equations q with q unknowns -  system of normal equations.  
Solution of regression for Gaussian curves 
It is generally known that the  V (λ) curve is similar to Gaussian curve. How much similar? From 
tables for V (λ) defined in CIE publication and accepted in national standard STN 01 1710 we can 
observate that V (λ) curves are not symmetrical to axis passing trough the maximum of those curves 
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so differences between V (λ) and Gaussian curves will necessarily negatively impact to calculation 
accuracy. To match Gaussian curves now we set the V (λ) function to the form of equation (1)  

 V
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where in role of statistical variable is now the wavelength λ of optical radiation and p is a parameter 
expreessing dilatation of curve along the x-axis. Average value of curve described by equation (5) 
we determine directly from V (λ) curves - µ = 555 for photopic vision V (λ) and µ = 507 for 
scotopic vision V´ (λ). Hence, expression (5) we will find as unknown function of two parameters V 
(p, σ).  
Equation (5) is non-linear function of parameter σ.  Now we develop the Gaussian function to 
Taylor’s series. First, from empirical values [xi, yi], approximate values p(0) and σ(0)  for parameters 
of function V = f (λ; p, σ) are to be determined. Then the function V = f (λ; p, σ) is to be developed 
to Taylor’s series in surroundings of the point [p(0), σ(0)] and neglected members of the second and 
higher orders: 
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Least-square condition is applied to function (6) which is non-linear for unknowns ∆p
(0) = p - p(0)  and  

∆σ
(0) = σ - σ(0). Solving the system of normal equations we obtain values ∆p

(1) and  ∆σ
(1). From these 

we calculate the next approximation of estimated parameters p(1) = p(0) + ∆p
(1) and  σ(1) = σ(0) + ∆σ

(1). 
Procedure is to be repeated with those approximations.  
But the member  p(0) + ∆p

(0) = p, therefore  is better to search for function V = f(λ; p, ∆σ). Though it 
is natural, because dependance of Gaussian function on p is linear.  
 V p= +ϕ λ ϕ λ σ1 2( ). ( ).∆        (10) 
Sum of squares then will be equal to 
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Partial derivations of sum of squares for both parameters are 
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and system of normal equations is resulting to  



 

 158 

p Vi
i

n

i i
i

n

i i
i

n

ϕ λ ϕ λ ϕ λ ϕ λσ1
2

1
1 2

1
1

1
( ) ( ) ( ) ( )

= = =
∑ ∑ ∑+ =∆  

p Vi i
i

n

i
i

n

i i
i

n

ϕ λ ϕ λ ϕ λ ϕ λσ1 2
1

2
2

1
2

1
( ) ( ) ( ) ( )

= = =
∑ ∑ ∑+ =∆     (12) 

From the system of normal equations follow formulas for unknown parameters  
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Finally, following statistical parameters are evaluated: 
1. average quadratic error  ε2 - represents average value of errors (V-V*)2 

2. dispersion σ2 - dispersion of errors (V-V*)2 around average value ε2 

3. decisive abberation σ 
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Results 
Two alternatives have been studied: approximation with solid and divided function. Due to non-
symmetrical nature of the V (λ) curve it was shown by analysis that second alternative is due to 
higher precision preferred to be used, disadvantage is, however, in use of two different formulas 
according to range of wavelength λ whis has been divided to two semiranges. Empirical formulas 
derived by author of the paper are as follows.  
 λ = 380 - 540 nm λ = 540 - 780 nm 
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 λ = 380 - 490 nm λ = 490 - 780 nm 
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−
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So for each of both curves V (λ) and V’ (λ) there exist two different formulas depending on the 
value of λ. Parameters of regression curves are shown in table 1, where k

p
1 2

=
σ π

   and  k 2
22= σ  

simplify the formula for Gaussian curve. 
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Table 1   Parameters of regression curves V (λ) and V´ (λ) 
 

curve V (λ) p σ k1 k2 
380 - 540 nm   97,54574 37,71606 1,031792 2845,002 
540 - 780 nm 116,03780 45,93143 1,007858 4219,393 
 

curve V´ (λ) p σ k1 k2 
380 - 490 nm 107,10180 43,17905 0,989541 3728,861 
490 - 780 nm   89,08644 35,54185 0,999958 2526,446 
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Fig. 3  Empirical and regression curves V (λ)  Fig. 4 Empirical and regression curves V´ (λ) 

Discussion and conclusions 
Statistical evaluation of regresion is shown on figures 5, 6 and in table 2. Maximum error do not 
exceed 4,5 % but average error is only about 1,4 % for the whole range both for V (λ) and V´ (λ) 
curves. Note that maximum error is only observable in very narrow part of spectrum.   
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Fig. 5  Statistical eval. of regression for V (λ)  Fig. 6 Statistical eval. of regression for V´ (λ) 

Table 2  Statistical evaluation of regression 
 ε2 σ2 σ  
curve V (λ) 0,000156 8,77.10-8 0,000296  
curve V´ (λ) 0,000223 1,99.10-7 0,000446  
Note: Statistical evaluation is common for the whole curve V (λ), i.e. using both formulas on whole 
range 
 
As it can be seen from figure 6, no error is observable in right part of spectrum for V´ (λ)! But it is 
difficult to match any Gaussian curve to the very „coarse“ left part, indeed.  



 

 160 

 Algorithm of non-linear regression has been programmed in Borland C++ language. In 
different cases, different values for 0th approximation have been used. Also being the estimation quite 
far from  0th approximation, the calculation converged very fast (i < 15), but sometimes, at quite 
good estimations started the calculation diverge. Generally said, it was necessary to reach 4 up to 12 
iterations for different cases.  
 Results of searching for empirical formulas are presented in a form of equations (15) to (16). 
Those are simple mathematical equations that with relative good precision match the original spectral 
sensitivity curves of human eye defined in standards. It is possible to use the formulas for different 
kinds of calculations in lighting engineering branch. However, if very high precision is required, i.e. 
to calibrate measuring devices, it is suitable to turn to more accurate values from tables or... We have 
prepared a new approach to increase the accuracy as much as possible and first results obtained 
recently show that this is possible. Results of further research will be presented soon, however, new 
formulas are more complicated and suitable mostly for computeral calculations. Formulas presented 
in this paper are suitable rather for fast manual calculations sometimes needed in practice of a 
lighting engineer.  
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